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Automated Hypothesis Tests and Standard Errors for Nonstandard Problems

Frederic M. IiJrd

Educational Testing Service

Introduction

Faced with a nonstandard, complicated practical problem in statistical

inference, the applied Statistician sometimes must use asymptotic approxima-

tions in order to compute standard errors and confidence intervals and to

test hypotheses. This usually requires that he derive formulas for one or

more asymptotic sampling variances (and covariances) for one or more

statistics g1,2,... . he must then compute the numerical value of an

estimate of some function of these variances and covariances.

If g
1

is a nonlinear function of more than two or three sample

statistics, the mathem'atical derivation of the necessary variance (and

covariance) formulas may be burdensome, or even prohibitive. The purpose

of the present paper is to call attention to computer program LASAHT

that computes estimated asymptotic sampling variances and covariances

numerically and carries out hypothesis tests without need for the statis-

tician to derive formulas rJr them. AUTEST, written by Martha Stocking,

and instructions for its use (Stocking and 1,,rd, 1973) are available

from the authors.

Asymptotic Variances and Covariances

Let i H (t) be a differentiable function of sample statistics

denoted by the vector t E (tu) (tu(X)) Denote the expectation of t

by r E fr
u

) If the t
u

have variances of order N
-1

, where N is the
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sample size, then the asymptotic variance of P, if' finite is dven

(Kendall and rAuart, 1958, eq. 10.142) by

6T)
Var = E E 0,-

(i7.=
cov(tu,tv)

u vulf

provided (1) is nonzero.

(1)

A consistent estimator is usually-obtained by substituting t

for T in (1):

(Mt) (),(t)
^2

= n ---=- ---=
ot

c/v(t ,t )

v
v

where

A c,/v(t ,t ) E Cov(t ,t )u v v T-t

(2)

I (1) is a rttional function, censistency rollowr from a proposition due

t) C!ramer, 17!,,, I. :,5). result is deduced from dif-

ferept b: ). The covariance between two

functions c'; and
b

:irLar'y e.7.1.1.ated
a

(t) (u)a-
. )

t, v
a'b v

(We will consistently use the n,,tation a^ rather than cp('
a b

'a'b

denote the quantit:v defined (5).)

(5)
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The comiuter obtains numerical values for 0;
a
(0/0t

u
directly by

numerical differentiation. It then obtains eSv(t ,t ) from standard
u v

formulas, as will be explained later, and proceeds directly to compute

(2) and (3) for all k(k t 1)/2 pairs in'the set ;1,;2,...,;k

Asymptotic Hypothesis Testing

In the preceding section, we started with some statistics to con-

venient for defining the ;a . It, will not matter what set of statistics

we choose so long as the tu are functionally independent of each other.

For (L) and (3), the vector t = (t
u

) must include all statistics needed

for estimating all parameters in the matrix UCov(tu,tv)11 For example,

wemighthavell=mi,r.-m,,andliCov(mrm2)11.711a_11 , where m.
13

denotes a samPle mean and a.. a population covariance. In this case t
ij

must include estimators of the c. t -mi'm2'8.112a12'8.221ij : f
-

In the present section, we start with a set of parameters denoted by

co and consider an 4 -b -n matrix X of observations drawn from the

distribution f(Xlco) . Tho parameters w are assumed to be functionally

. independent of each Aher. We wish to test the composite hypothesis

, where ; 2 (ti,'tp,...,k)t is a vector of k elements.

Let ; be an estimate of g If k = 1 , g is simply a scalar,

, and H can usually be tested by computing where cA is the

asymptotic sampling variance of E with t substituted for the unknown

parameters T The rejection region for H
0

consists of one or both

,A

tails of the asymptotic distribution of /.(T? under Ho In most common

problems, this distribution is normal with zero mean and 'unit variance.

5



If g is a vector of k elements, Ho can usually be tested by

computing Q gIC E , -where C is an estimate of C E 11Cov(Ia,gb)11 ob-
-

tained from (2) and (3). The rejection region for 110 consists of all

large values of Q... In most common problems, the asymptotic distribution

of Q is chi square with k degrees of freedom.

Stroud (1971a) proved that the asymptotic hypothesis testing procedure

just described is valid under the conditions that

1. The functions F
'a

= E
a
(r) ( a = ) have bounded and
-

continuous second derivatives in the neighborhood of g = 0 .

2. The vector t is asymptotically normal with mean T and

nonsingular 11Cov(tu,tv)11

5. ilckv(t
u
,t
v

is nonsingular with probability one and con-

verges in Probability to 11Cov(tu,tv)11 .

These conditions are fulfilled ham' a broad class of pralems, some of which

are illustrated in Tables 1 and

If the /a -are the maximum likelihood estimates of the ga

( a = ), obtained without the restriction g = 0 , then the

test described is asymptotically mocA stringent and is also locally

asynntotically most powerful (I ,ran, 1970; Wald, 1945). A regularity

condition worth noting is (as already implied by condition 1 above) that

0 must not be on the boundary of the range of g .
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Implementation

As presently written, LASAHT assumes that' f(Xlco) is multivariate

normal. It would be fairly simple to substitute some other &ssumption,

as will be seen. If there are no restrictions on,the parameters, the

elements of m are presently taken to be the usual parameters: the means

0
(p.) ,variances(cifford.),an.dcovariances(aidof the random

1

variables X
1
,X
2 ' n

. Naturally, the to are taken to oe the suf-

ficient statistics:samplemeans(m.),samplevariances(s.or s.) ,

1 1

andsamolecovarianees(s.). For asymptotic work, it is immaterial
ij

whether the s., are the unbiased or the usual biased estimators of the

a.. . When there are no restrictions, estimated w , denoted by to, is

identical with t ; 0.3 and T are identical asymptotically.

LASAHT uses standard formulas for the cilv(t
u
,t
v

) required in (2)

and (v). The standard formulas for the multivariate normal case, presently

incorporated into LASAHT, are

c/v(m..m.)1' u 13

c/v(s ,s..) = (a .a a a )/N
gh ij gl hj gj hi

C/V(Mi,Sgh) = 0

where a denotes a consistent estimatol of a covariance.

When using LASAHT, the statistician specifies k functions

1.(),g2(),.,k() in which he is interested. fie does this simply by

7
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writing a FORTRAN arithmetic assignment statement for each function,

expressing the corresponding
'a

. as a function of t . He inserts these

statements in a place provided in the program. LASAHT proceeds automati-

cally from this point, computing t , (
a
)2

a -
(0) ' IN

a
Ptu

11c)6v(tu ,tv )11,6L=PP,^11 , Q = , and finally the percentile

rank of ,Q in the appropriate chi square distribution.

If f(X1w) is not multivariate normal, it is only 'necessary to re-

define the to as functions of the observations X and to replace (4)

by correct formulas for liciv(tu,tv)1J . With these changes, LASAIIT can

proceed just as described.

Without user action, the program accommodates two samples, each com-

posed of any number of observations on a maximum of 10 random variables.

More samples (up to 20) with fewer random variables can be accommodated

if the user sets all population covariances between variables from dif-

ferent samples equal to zero (see below). In addition, the maximum of 10

random variables per sample can be increased, if desired.

Restrictions on the Parameters

In the normal multivariate case, there is a total of n(n + 5)/2

sample means, variances, and covariances. Unless instructed otherwise,

LASAHT automatically uses these n(n i 3)/2 sample statistics as estima-

tors for the correspdnding parameters in w .

If r restrictions are imposed on the parameters (for example,

certain means or variances are known to be equal, or certain covariances

are known to be zero), then K , the number of parameters in w, is

8
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- correspondingly reduced. if r restrictions are imposed in the normal

multivariate case, then K n(n + 3)/2 -r When r restric-

tions are to be imposed, the statistician must arrange matters so that r

of the estimators are functions of the remaining K independent estima-

tors, to be denoted by ai,a,2,,k

He does this by inserting in the program FORTRAN arithmetic assignment

statements defining whatever estimators he wishes. For example, if it

is known that two population means pi and 11,,, are equal, the statisti'-

clan would supply a FORTRAN statement defining t in terms of al , 112 ,

and other estimators. If, for example, the sample sizes are equal, he could

then insert in the program the FORTRAN equivalent of the definitions µ1 =

(m, m,)/2 and i. (mi

In this way the Ea and the w.11 are directly or indirectly defined

as functions of the m. and the s.. . It will be convenient to refer

. to the mi anc, the collectively as the T
P

, p = 1,2,...,

n(n + 3)/2 .

BY (5),

uc) 01
cP(1,1 ) = c,/v(T T

q
)

u v 0T p'

P q 0

( 5 )

where civ(Tp, ) E cov(T"f,Tq)j . Replacing the to in (5) by a
it

cu = cu
Pvt 0.0

and using (5), we have by the chain rule for differentiation



-8-

`% (413 " "V j
-(32 = E E E 7-,11- cpv(Tp, Tq)

u v wvpq p q

agb
= E E

OT
civ(T ,T )

OT p q
(6)

The civ(T ,T ) are given by (4). LASAHT conveniently obtains the ^
P q. agagb

from (6) rather than from (3)

Example 1

Suppose the statistician wishes to test the hypothesis g -,0]2 = 0

under the restriction u u
1 '2

For the normal bivariate case,

2,
T E IT ) = fin m

2'
s
2

s
12'

s
2

j

It does not matter whether w is defined as (p. a
2

a
12'

e) or as
2

-41, a-
l'

61 . The statistician supplies the FORTRAN definitions
,2 2

and

= S
i
+ M p.

,

(i =
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+ a
12-

= s
If I =' 1 2

a12

LASAIIT proceeds automatically from this point on. In accordance

with (6), Var is computed from the cov(T
u
,T
v

) given by (4).

The µ and a given ablove are well known as the maximum likelihood

estimators under-the restriction lu

1 2
LASAHT does not automatically

obtain MILE. If the statistician does not have formulas for the MLE, he

can use any consistent estimators.n their place. In example 1, he could

,..2
.,

_without much loss have chosen 5._ s

_
= s,, If in-

1 ', a2 ' 1, 1,

efficient estimators are used, the test o' the Wpothesis is still valid,

but the roer Df the test is rcluced.
,

Illustrative Problems

LASAHT has been checked out by applying it to numerical examples,

testing some three ct)zen different null hypotheses for which the numerical

answers o,.uld be verified. he partial listing in Tables 1 and 2 may

suggest the Octe of the program. Primes are used to distinguish parameters

of two different porulatiems: p. , E (12:1,_22 E (ii) , and

=
..-11 II

aidla
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Example 2

. Consider testing the null hypothesis that the tetrad o o
'12'54

Pl5P24
0 , with the restrictions that o5 = a4 ,

(115 (114 ' (125 (124

(I,..)rd, in press). First, let us replace the null hypothesis by.the equivalent

hypothesis that
5 al2(134

- a13a24 = 0 . This definition of the funfunction

is prOvided to the computer by inserting in the program the arithmetic

assignment statement

1

XIIIAT(1) [FORTRAN equivalent of a a..
a a)4 -15-243

It is further necessary to provide FORTRAN statements defining the

a.. in terms of sample means, variances, and covariances. We choose

al5 (s1.5 si4)/2

&25 = a24 (s2-5 4 320/2

62
^2

k/

2
= 0' 4 = s,

which are the maximum likelihood estimators under the stated restrictions.

,

2
,

^ ^
The estimators a a and a

12
are not defined explicitly in the

2

program, with the result that .the computer resorts to a default procedure

that assumes (correctly) that1 a s
11 ' a2 s22 '

a
12

s
12 '

and

= S,

Provided with the FORTRAN definitions shown, the computer will now

compute , its estimated asymptotic variance ai , the test statistic

i/a^ and the percentile corresponding to the test statistic. All this
F.,

^
is easier for the statistician than deriving the formula for a^ --an

14



eighth degree polynomial containing ten terms involving seven statistics- -

and then computing the test statistic from this formula.

Example 3

In a Monte Carlo study, 1000 values of. isi and their probability

levels were computed by IASAHT, where

" 612654 615624

.) J6- P ))4 1) )4 24

(Lord, in press). The time required on a 360/05 for all 1000 was about

80 seconds.

Example It

The last example in Table 2 was carried through for sets of data

(Stroud, 19711) having g observed variables in each of two groups. Thus

there were 88 different sample statistics T involved in the double

summation in (0. The vector null hypothesis !, that was tested con-

sisted of k = 18 separate equations of the form !a = 0 . In three

separate applications, LASidiT produced values for the test statistic

identical to the obtained b, Stroud using complicated analytic formulas.

The hypothesis tested .ma-, be described as a multivariate analysis

of covariance hypothesis with three criterion variables and'/ five covari-

ables, modified to take account of random errors of measurement in the

covariables. Problems of this complexity are very difficult to

carry through without the aid of a program such as LASAHT.
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